Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 16(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337727

RESUMEN

Panax ginseng, a traditional Chinese medicine with a history spanning thousands of years, faces overexploitation and challenges related to extended growth periods. Tissue-cultured adventitious roots and stem cells are alternatives to wild and field-cultivated ginseng. In this study, we assessed the in vitro xanthine oxidase and α-glucosidase inhibitory activities of saponin extracts among cultured cambial meristematic cells (CMC), adventitious ginseng roots (AGR), and field-cultivated ginseng roots (CGR). The xanthine oxidase (XO) and α-glucosidase inhibitory activities were determined by uric acid estimation and the p-NPG method, respectively. Spectrophotometry and the Folin-Ciocalteu, aluminum nitrate, and Bradford methods were employed to ascertain the total saponins and phenolic, flavonoid, and protein contents. The calculated IC50 values for total saponin extracts against XO and α-glucosidase were 0.665, 0.844, and >1.6 mg/mL and 0.332, 0.745, and 0.042 mg/mL for AGR, CMC, CGR, respectively. Comparing the total saponin, crude protein, and total phenolic contents revealed that AGR > CMC > CGR. To the best of our knowledge, this study presents the first report on the in vitro comparison of xanthine oxidase and α-glucosidase inhibitory activities among AGR, CMC, and CGR. The findings offer valuable insights into the development of hypoglycemic and antihyperuricemic medicinal, nutraceutical, and functional products utilizing AGR and CMC.


Asunto(s)
Panax , Saponinas , Panax/metabolismo , Xantina Oxidasa/metabolismo , alfa-Glucosidasas/metabolismo , Raíces de Plantas/metabolismo
2.
Brain Res ; 1569: 19-31, 2014 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-24802658

RESUMEN

Spinal cord stimulation (SCS) is an established and cost-effective therapy for treating severe chronic pain. However, despite over 40 years of clinical practice and the development of novel electrode designs and treatment protocols, increases in clinical success, defined as the proportion of patients that experience 50% or greater self-reported pain relief, have stalled. An incomplete knowledge of the neural circuits and systems underlying chronic pain and the interaction of SCS with these circuits may underlie this plateau in clinical efficacy. This review summarizes prior work and identifies gaps in our knowledge regarding the neural circuits related to pain and SCS in the dorsal horn, supraspinal structures, and the Pain Matrix. In addition, this review discusses and critiques current experimental and computational models used to investigate and optimize SCS. Further research into the interactions between SCS and pain pathways in the nervous system using animal and computational models is a fruitful approach to improve this promising therapy.


Asunto(s)
Encéfalo/fisiopatología , Dolor Crónico/terapia , Terapia por Estimulación Eléctrica , Modelos Neurológicos , Neuralgia/terapia , Médula Espinal/fisiopatología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA